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and were abld to measure the equilibration rate.
We have, however, produCPQ] non-equilibrium samples which have a muc

lower T; (i.e., viscosity) than melt-quenched or annealed samples. We looHed

at the far infrared spectrum of these samples before and after equilibration an
found no significant changes. Their Tg was too low to permit the handling
necessary for a creep experiment, )

Our viscosity data extend the previous data of Cukierman and Uhlmann,
and Jenckel to lower tempe;ratlfres. We find, in contrast to the higher temper 4
ature WLF type behayior, /that the data show Arrhenius behavior between 25 an
35°C (2% 1014 ¢toto- L—poh;v'); the slope is 130 kcal/mole. This low temp-
erature Arrhenius-high temperature WLF behavior is similar to that observed
by Macedo for B03. crd g

We have-alse-used these measurements, to determine stress and thermal
relaxation rates as a function of temperature. They are not directly propor-
tional to the equilibrium viscosity; the coefficient changes by a factor of 7 ove
the range 25 to 369C,~We také this to be the result of a temperature depen-
dent equilibrium structure.

In additien, 'the relaxation to equilibrium is not a simple exponential
decay.™ That has been observed many times previously; however, we have
noticed that for this viscous relaxation data one does not need to invoke a
spectrum of activation energies in order to fit the decay. The data can be
simply described in terms of a relaxation rate, 1/7 which is inversely pro-
portional to the time dependent viscosity, M. [In other words, 1/7 =a(l/n).]
This simplification is not possible for the calorimetric relaxation data.

These results are consistent with the view that amorphous selenium is a
mixture of 8 atom rings and polymeric chains which can readily interconvert
and whose ratio is temperature dependent, _
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I. INTRODUCTION
It has been thought for many years that amorphous selenium, by analogy
to sulfur, is a molecular solid mixture of eight member rings and polymeric

chains. Briegleib1 and othersz’3 supported this hypothesis by demonstrating

that, like sulfur, one fraction of amorphous selenium (a-Se) is much more
soluble in cold 082 than another; presumably these correspond to the ring

and chain fractions, respectively.a They found that, also like sulfur, the
relative size of the two fractions can be manipulated by changing the tempera-
ture from which the melt is quenched. The different molecular structures
produced by quenching from different temperatures have shown up in resistivity
measurements2 and in viscosity measurements both above5 and below6 Tg’ and in
Tg, the modulus, and density,6 but the variations were rather small,7 and no
one has tried to measure the relative stability of these different structures.
The objective of this work was to produce selenium in non-equilibrium states
whose composition could be probed by the manner in which they relaxed toward
equilibrium. Samples were produced by vacuum evaporation. It was expected
that this procedure would skew the molecular structure toward smaller chains
and more rings, and that the skewing would be much larger than can be achieved
through melt-quenching.8 Thus, the effects of molecular structure should be
considerably larger than in earlier experiments - in fact, large enough to
measure the kinetics of structural equilibration. Toward that end, we meas-
ured the viscosity and heat capacity of these samples as a function of tempera-

ture, and also their far infrared (FIR) transmission spectra.

IT1. EXPERIMENTAL DETAILS
The samples were produced from 5-9's pure Se pellets.9 The pellets were

premelted and outgassed in vacuum (typically 8>(10—7 mmHg), and then evaporated
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onto a temperature controlled substrate - a NaC{ coated glass slide. The

samples were V100um thick and produced in 20 min. They were floated off the

glass in water.

For viscosity measurements, the substrate was held at 20°C, and masked

e

to produce a specimen as shown in Fig. la. This was clamped into one arm of
a balance beam (Fig. 1b), 40 grams were hung from the other arm, and the

resulting creep was monitored by a linear voltage displacement transformer

(LVDT)10 which surrounded an iron core built into the weighted arm of the
balance. The narrow part of the sample was surrounded by a slot in a termpera-
ture controlled aluminum block. Thermal contact was maintained by filling the
slot with oil. The apparatus was operated in a temperature controlled box

set at V4°C to eliminate expansion or contraction of the various components

of the balance beam, and also to eliminate contributions to the creep by the
end tabs of the sample. The instrument was calibrated by shifting the LVDT

a measur;d distance with a calibrated screw. This screw was also connected

to a low speed motor which periodically lowered the transformer to prevent

the recorder pen from going off scale.

The film cross sections were %2X10_3cm2, so that we were imposing a
stress of q1107dynes/cm2. According to the previous work by Jenckel,11 this
is well within the limits of stress for Newtonian flow.

The heat capacities were measured in a Perkin-Elmer Differential Scanning
Calorimeter (DSC-1I). The samples for this were prepared as described in the
first paragraph of this section except that no evaporation mask was used in
this case. The substrate was held at temperatures from 14°C (cooling water)
to -196°C (liquid nitrogen). The samples were floated off the substrate in

ice water. Then they were dried, broken up, sealed inside aluminum plan-

chettes, and stored on dry ice until they were used.




The infrared spectra were obtained from a Digilab Fourier transform

spectrometer at MIT. In this case, the films had to be evaporated through a
screen so that the surface would be uneven enough to average out interference
effects. The screen was made of parallel 1 mil wires spaced by V1 mil, and it
was moved twice during evaporation to randomize the surface fluctuations. In
order to preserve the evaporated structure, the substrate was kept at -57°C
(using a mixture of dry ice and acetone), and the samples then handled as for
the calorimeter. The spectra were taken in times much shorter than those needed

for measurable structural relaxation.

III. VISCOSITY RESULTS

The procedure for making the measurements was as follows: The creep rate
was monitored at constant temperature until steady state was achieved. Then.
the temperature was changed very quickly (compared to the equilibration rate)
to a new temperature, held there, and the creep rate was monitored until a new
steady state creep was reached. The sample was under a constant stress at all
times.

With this procedure, four independent parameters can be obtained: 1) the
equilibrium viscosity as a function of temperature; 2) the isostructural viscosity
activation energy; 3) the relaxation rate; 4) the analytical form of the
relaxation.

The equilibrium viscosity is shown in Fig. 2. The solid line is a fit
to the previous data on melt-quenched samples; Jenckel,ll who did creep measure-
ments, and Cukierman and Uhlmann,12 who did beam bending measurements. Note
that in the region of overlap, the data are virtually identical. It is clear
from our additional low temperature data that the analytical form of the tempera-
ture dependence of the viscosity is very different from that used by Cukierman and

Uhlmann in the higher temperature range. Instead of the WLF type curve, which

s 2
an e




has a slope which increases with decreasing temperature [n=exp a/(T—TO)], and
which fits the data well for T>35°C; the data for T<35°C has the form of a

simple exponential with a slope of 127.9 kcal/mole and a prefactor of -182.6.
This change to Arrhenius behavior is similar to the behavior exhibited by BZO

1
in the same viscosity region. >

3

The second parameter [ have called the isostructural viscosity activation
energy. In the free volume model, the isostructural viscosity is equivalent
to the volume viscosity and is a measure of the ease with which the free volume
can be re-equilibrated after a rapid temperature change. It is obtained by noting
the change in viscosity of the sample after a very rapid change in temperature,
and so one is measuring the temperature dependence of the viscosity of a fixed
structure (that is the structure which was in equilibrium at the starting
temperature). The rapid nature of this measurement introduces considerable
scatter in the results, but one can see in Fig. 3 that the activation energy
averages V/7 kcal/mole. This is "50kcal/mole less than the equilibrium viscosity
activation energy; the difference presumably being the activation energy required
to re-equilibrate the molecular structure after a temperature change. One might
expect the equilibration to involve breaking Se-Se bonds in order to change the

5 : 14 5 E
average Se chain length, or ring concentration. It is gratifying to note
that our measured value (V50 kcal/mole) is reasonably close to the energy of such
15
a bond (44-50 kcal/mole).

After a temperature change, the relaxation of the creep rate toward its
equilibrium value is clearly not a simple exponential decay (Fig. 4). That is
not unusual; simple relaxations are never observed in complicated systems such

16
as polymers. However, for an adequate fit, it is not necessary to invoke a
spectrum of relaxation times, as is customary in such cases. One can achieve a

good fit with a much simpler expression (Fig. 4) by supposing that the relaxation

rate, 1/t, is proportional to the creep rate, R. Thus, a sample initially in a
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non-equilibrium state, will relax toward equilibrium in the following manner:

R(t) = 1/1(R) [R(t)-Re] (1)
where Re is the steady state creep rate. and 1/t(R) is the instantaneous relaxation
rate. The simplest assumption (which turns out to be not quite true) is that

1/T(R) = aR. Then one has:
R = ~-aR(R—Re). (2)
The solution to this differential equation is relatively simple:

R(t) = RiRe/ [Ri - (Ri—Re)exp(—aRet)] (3)

where R(t) = the time dependent creep rate, R, = the initial creep rate, Re = the

i
equilibrium creep rate, and a = the relaxation rate/creep rate. We have measured
the time dependence of the creep rate when approaching equilibrium from both
above and below the equilibrium temperature (see Fig. 5) and can fit the data
well using Ri’ Rf, and a as free parameters. Plotting them as functions of tempera-
ture (Figs. 2,3, and 6) we found smooth curves, indicating that our fit was not

a fortuitous result of the uncertainties in our data. We also found that a had

a very definite temperature dependence (Fig. 6); it changes by more than a factor

of 5 over our experimental range. The significance of this variation in a is
uncertain. From a very simple point of view the relaxation time is determined by
the number of molecular displacements needed to equilibrate a structure divided

by the rate of these displacements, while the viscosity is determined primarily

by the rate of molecular displacements. Therefore the ratio, a, is simply pro-
portional to the number of displacements needed for equilibration, and should be
determined by the structure of the molecule and its environment - smaller molecules
equilibrating more rapidly than larger ones and large molecules surrounded by

small ones relaxing more rapidly than those entangled in many other large ones.

For both reasons the observed temperature dependence of a suggests that as one

lowers the temperature, the equilibrium structure of amorphous selenium changes

in favor of rings at the expense of long chains.

R S




IV. INFRARED SPECTRA RESULTS

The far infrared spectrum is shown in Fig. 7. As stated in the experimental
section, the films were evaporated onto a cold substrate and kept cold and dark
until use to preserve any structural differences. After several scans, they were
heated in water to 50 to 70°C for 15 min. This is well above Tg’ and from the
creep data, considerably longer than needed for equilibration. The annealed
sample's spectrum is virtually the same as the as-prepared sample's.

The invariance of Se's far infrared optical spectra has been demonstrated
previously with samples quenched from different melt temperatures.l7 The Raman
spectrum has been shown also to be independent of sample preparation techniques
for both melt-quenched and evaporated samples.ls Taken together, these results
strongly suggest that the molecules making up amorphous Se interact too strongly
to be able to identify an absorption line with a particular species as had been

suggested for Se.1
V. HEAT CAPACITY RESULTS

Another way to investigate relaxation rates in selenium is to look at its
heat capacity as a function of thermal history in the neighborhood of the glass
transition temperature, Tg.zo’21 A typical heat capacity scan for Se at Tg is
shown in Fig. 8. At 2.5°/min. the heat capacity increases by 50% over a range of
only A10°K at 310°K. 1In spite of this discontinuous appearance, the glass transi-
tion is, of course, not a thermodynamic transition and its presence does not imply
a discontinuity in a material's equilibrium properties.22 One can demonstrate
that the step is a direct consequence of a glass's temperature dependent structural

21,23

relaxation rates. We have devised a simple iterative equation which keeps

track of the excess enthalpy contained in a sample as it is scanned in temperature:
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where AHn is the excess enthalpy at the end of a step of time At and the tempera-

ture change AT. Cconfig is the heat capacity associated with the structural degrees

of freedom; these degrees of freedom have a relaxation time T (T). Depending on

one's sophistication, the structural relaxation time can be simply described

by 24

T = exp(a + b/(T-To)] (5)

or one can improve the model by adding an intermediate step to account for the
finite relaxation rate of T, as discussed in the viscosity section.
Then the heat removed from the sample at each step is given by the change

in the excess enthalpy (AHn = AHn_l) plus the change in the equilibrium enthalpy

CequilAT; the observed heat capacity is:

= +
Cobs Cequil

If one measures Tg as a function of scan rate (we defined Tg as the tempera-

(MH__, - AH )/AT (6)

ture at which we measured half of the structural heat capacity), one can invert
this process and, by trial and error, determine the relaxation time as a function of
temperature. Using the experimental data in Table I, we got fits of the heat
capacity curves as shown by the dashed line in Fig. 8 and the relaxation times
indicated by solid dots in Fig. 9. By reducing the isostructural activation

energy to 55.6 kcal/mole, we could slightly improve the match with the experi-
mental curve (the dotted line in Fig. 8). For a more detailed agreement one can
use the equations formulated by De Bolt et gl?l which make use of a spectrum of
relaxation times. We have not tried to use their equations to calculate relaxation
times, as our simple equations produce reasonable fits to experiment. Note that
even though the scan rates spanned 0.3 to 20°/min., the range of the data was

limited to about 10°C by the very rapid change of T with temperature.




Table 1

Selenium glass transition temperature, Tg’ vs. scan rate. Tg is taken to be
the temperature at which the observed heat capacity is halfway between the

extrapolated glass and liquid values. The relaxation time at those temperatures

it i D20

was determined by numerically simulating the heat capacity as decribed in the
heat capacity section, and adjusting T(T) until the calculated Tg matched

, experimental Tg to < .2K, then calculating T(Té).

Scan rate T (K) l T(Tg) (min)

(K/nin) g

20 314.6 .14
: 10 3133 .25
! 5 311.4 .69

2.5 310.1 1.0

1.25 309.2 2.3
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One can extend the data to lower temperatures using the procedure outlined

in Fig. 10. Starting at some temperature T >Tg, with the sample in thermal

I

equilibrium, one cools to T,<T and holds it there for a time t

e A As it cooled

below Tg’ the molecular structure was nearly immobilized, so that when one reached
TA’ the structure was not in equilibrium and had an excess enthalpy which, during
the annealing time, slowly relaxes out. The heat is being released so slowly
that it is very hard to detect. However, when the sample is warmed above Tg’
it returns to thermal equilibrium, and that heat has to be replaced. As a result,
an endothermic relaxation peak is observed at Tg whose area is equal to the energy

lost during the annealing. When this area is recorded (minus the area of the small

= 0) as a function of t,, one can determine a relaxation curve

peak observed for tA -

for TA' The low temperature limit on this method is determined solely by the
experimenter's patience. In our case, we went down to 294°K by annealing for periods
up to 3 days. The curves are shown in Fig. 12; they have been normalized by the

25
enthalpy the sample would lose if it had completely equilibrated at T,. The curves

A

are clearly not the result of a single relaxation time; the form of that relaxation
is indicated by the dotted line in Fig. 10. The curves even look smeared out
compared to the form resulting from the relaxation proposed in the viscosity section
(the dashed line in Fig. 12). It was calculated for TA = 300°K; the initial
relaxation rate was estimated from the data on Fig. 10. Clearly these curves
reflect a wide spectrum of relaxation times; if one models the curve with a
Gaussian in the log of the relaxation times, one finds a good match for a half
width of .7 (i.e., it spans a factor of 5 in the relaxation times).

We have taken the 507 relaxation times from these curves and plotted them

(the x's) with the other relaxation times in Fig. 9. The agreement is very

satisfying.
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In a final set of samples, we used measurements of Tg to look for non-

equilibrium molecular structures. Since we produced our samples by vacuum

evaporation, the concentration of shorter chains and rings should be considerably

enhanced. However, if the substrates were too warm, the samples could have

annealed to an equilibrium structure before any measurements were made. There-

fore we tried a series of evaporations onto cooled substrates. Since such
non-equilibrium structures might be very active, they were handled with great

caution; they were removed from the substrate in ice water, stored in dryv

ice, and, as far as practicable, were not exposed to light. The resulting heat

capacities are shown in Fig. 12; one can see two significant differences from
the curve for the annealed sample (the dashed line): 1) The glass transition
temperature is considerably lower for the samples from the colder substrates.
For the selenium laid down on the coldest substrate it is reduced about 10°K
to 305°K. In Fig. 12, we see that the temperature corresponds to a T of 30
min. in equilibrated Se, whereas Tg occurs at a T of V.15 min. The viscosity
in this sample is 7200 X lower than in equ.librated samples. 2) Immediately
after the relaxation peak is a broad exothermic peak which is never seen in
quenched samples annealed at any temperature. Since it partly overlies the
relaxation peak, it is impossible to measure the energy involved.

If the sample is either exposed to light (at 1T=273°K), or thermally
annealed (see Fig. 13) Tg increases in temperature and the exothermic peak
decreases in area; after a sufficient amount of annealing (one scan all the
way through the exothermic peak, to 350°K is sufficient), the glass transition
looks identical to that of an equilibrated sample made by any other method.

Clearly we are producing, and freezing in, a molecular configuration

of low viscosity and some photoactivity. It is unstable and reduces exothermically

to the equilibrium configuration at a rate limited only bv the speed of molecular

-
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movements. It may be that this is primarily a ring glass. However, as noted
in the IR spectra section, there was no significant difference in absorption
between freshly evaporated and equilibrated samples. If that spectrum is indic-
ative of the molecular species present, then it must be concluded that we have
not increased the concentration of the rings; we have only produced a glass
consisting of relatively short and/or poorly packed chains.

In any case, the nature of the relaxation of this structure into the
equilibrium structure could be very informative if the exéérimental diffi-

culties of handling it can be surmounted.
VI. DISCUSSION

The FIR absorption spectra showed only that it is not a fruitful tech-
nique to use as a probe of the molecular structure of condensed Se. Pre-
sumably the molecules interact too strongly to consider them as independent
rings and chains with known vibrational modes. Recently Gorman and Solin18
have claimed some success with a FIR Ramam setup; using the polarized and
depolarized Raman spectrum together, they can single out a ring mode at
112 cm-l. It might be fruitful to pursue that method further to see if that
mode's relative intensity is a function of sample preparation technique or
annealing time.

Our other experiments cannot elucidate the exact molecular composition
of selenium, but they do reveal some interesting behavior which is consistent
with an amorphous selenium consisting of a mixture of rings and chains. Clearly,
from our heat capacity data, an evaporated sample initially has a structure
very different from that of a melt-quenched or annealed sample. The evaporated
sample had a viscosity at least 200%x lower than the annealed samples. Since

the viscosity scales faster than linearly with chain length,26 that corresponds

i
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to a drastic reduction in polymerization by a factor of 5 to a chain length
of 105 atoms (if one takes an estimated equilibrium chain lengt:h27 of 106).
Therefore, these samples consist of shorter chains (and/or a higher concen-
tration of rings). 1In spite of this structural difference, it appears that
these samples readily anneal to an equilibrium state indistinguishable from
equilibrated melt-quenched samples at temperatures as low as 25°C (about 20°
below Tg). It can only be concluded that one anneals to a unique equilibrium
state, and that, therefore, the molecular species c¢an readily interconveért
during annealing.

In addition, the observations (1) that the activation energy for the
equilibrium viscosity is larger than that for the isostructural viscosity
by about the strength of a Se-Se bond and (2) that the ratio of the relaxa-
tion time to viscosity is not a constant, suggests that the molecular struc-
ture is a function of temperature, and that the relaxation observed is pri-
marily a result of the molecular species interconverting as they relax to
their equilibrium concentrations.

Finally, since there appears to be no discontinuity in the elastic
properties of this equilibrium state, one can rule out a sharp ring-chain
transition analogous to that in sulfur above 25°C.28 Rather, the smooth
decrease in a with decreasing T suggests a gradual increase in ring con-
centrations as suggested previously.29

The form of the relaxation proposed here is quite successful at
modeling the viscous relaxation, and relaxation times calculated independently
from creep rate and Tg data agree reasonably well. In addition, it reproduces
the general behavior of the heat capacity curves and thermal relaxation
curves better than a simple exponential relaxation. However, in detail the

experimental and predicted heat capacity curves do not match very well at all;

i
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it is clear that there exist a wide range of relaxation times for the thermal

relaxations, which are not apparent in the viscous relaxations.

This behavior is qualitatively consistent with a ring-chain model of
selenium. It is reasonable to suppose that rings and chains have different
relaxation rates and thermal relaxation measurements would show an appropri-
ately weighted mixture of the two rates. However, it is only the long
molecules which determine the viscosity and so the viscous relaxation measure-

ments would show only the single time constant characteristic of long chains.
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SELENIUM CREEP METER
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Fig 1b

Schematic drawing of a) a selenium creep sample and b) a balance modified for measuring
creep. The sample is clamped on the left hand side of the balance. The narrow part is
inserted in an oil filled slot in a temperature controlled Af block. From the right
hand side hangs a dashpot to damp vibrations, a tray for weights, usually 40g, and an
¢ iron slug which is surrounded by a linear voltage displacement transducer attached to
the frame. The transducer is mounted on a motor drive translation stage so it can be
periodizally repositioned when its output drives the recorder pen offscale.
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FIGURE 2: Selenium viscosity vs. temperature. The solid circles are from this work. The

solid line is a fit to previous data by Cukierman and Uhlmann (a beam bending experiment).12
and Henckel (a creep experiment) ,11 the ¢ covers the range of data by Grahan and Chang.®

The dashed line is a fit to all of the data below 320°K, and has a slope of 127.9 kcal/mole
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